Transversal of full outer measure

Ashutosh Kumar Department of Mathematics & Statistics IIT Kanpur

Set Theory RIMS 2020

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Forcing with σ -ideal

Theorem

Let \mathbb{P} be a forcing. Suppose there are $\langle \mathbb{Q}_n : n \ge 1 \rangle$ and $\langle p_n : n \ge 1 \rangle$ satisfying (1)-(4) below. Then forcing with a σ -ideal cannot be isomorphic to \mathbb{P} .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- (1) For every $n \ge 1$, $p_n \in \mathbb{P}$ and $\mathbb{Q}_n \lessdot \mathbb{P}_{\le p_n}$.
- (2) $\bigcup \{ \mathbb{Q}_n : n \ge 1 \}$ is dense in \mathbb{P} .
- (3) Each \mathbb{Q}_n is isomorphic to random forcing.
- (4) \mathbb{P} adds a Cohen real.

New reals

From now on, we fix \mathbb{P} , $\langle \mathbb{Q}_n : n \ge 1 \rangle$ and $\langle p_n : n \ge 1 \rangle$ satisfying clauses (1)-(3) above.

Lemma

Suppose $\mathbb{Q} < \mathbb{P}$ is atomless. Then forcing with \mathbb{Q} adds a new real.

Proof: Since \mathbb{Q} satisfies ccc, it is enough to show that every \mathbb{Q} -generic extension contains a new ω -sequence of members of V. Since random forcing is σ -linked, $\bigcup \mathbb{Q}_n$ is σ -linked. Since $\bigcup \mathbb{Q}_n$ is dense in \mathbb{P} , it follows that \mathbb{Q} is also σ -linked. Let $\mathbb{Q} = \bigcup \{L_n : n < \omega\}$ where each L_n has pairwise compatible conditions in \mathbb{Q} .

Towards a contradiction, suppose $p \in \mathbb{Q}$ forces that no such sequence appears in the extension. Let α be the least ordinal such that for some $\nu \in V^{\mathbb{Q}}$ and $q \in \mathbb{Q}$, $q \leq p$ and $q \Vdash_{\mathbb{Q}} \nu : \alpha \to V \land \nu \notin V$. It is clear that α is regular uncountable. Fix $q \leq p$ and $\nu \in V^{\mathbb{Q}}$ such that $q \Vdash_{\mathbb{Q}} \nu : \alpha \to V \land \nu \notin V$.

New reals

For each $\beta < \alpha$, fix a maximal antichain $A_{\beta} \subseteq \mathbb{Q}$ such that for every $p \in A_{\beta}$ there exists $\nu_{\beta,p} \in V$ such that $p \Vdash_{\mathbb{Q}} \nu \upharpoonright \beta = \nu_{\beta,p}$. Choose $n < \omega$ such that $W = \{\beta < \alpha : A_{\beta} \cap L_n \neq \emptyset\}$ has size α . For each $\beta \in W$, fix $p_{\beta} \in A_{\beta} \cap L_n$.

Note that $\{\nu_{\beta,p_{\beta}}: \beta \in W\}$ has pairwise compatible sequences. Let ν_{\star} be their union. Since \mathbb{Q} satisfies ccc, there exists $q' \leq q$ such that $q' \Vdash_{\mathbb{Q}} |G_{\mathbb{Q}} \cap \{q_{\beta}: \beta \in W\}| = \alpha$. But $q' \Vdash_{\mathbb{Q}} \nu = \nu_{\star} \in V$ which is impossible.

Infinitely often equal or random

Lemma

Suppose τ is a \mathbb{P} -name such that $\Vdash_{\mathbb{P}} \tau \in 2^{\omega} \setminus V$. Then for every $p \in \mathbb{P}$ there exists $q \in \mathbb{P}$ such that $q \leq p$ and one of (a), (b) holds.

(a) $q \Vdash_{\mathbb{P}} V[\tau]$ is a random real extension of V.

(b) There is a Borel function $B : 2^{\omega} \to \omega^{\omega}$ such that $q \Vdash_{\mathbb{P}} B(\tau)$ is an infinitely often equal real over V.

For simplicity we assume that p is the trivial condition. For each $n\geq 1,$ define $\mathring{T}_n\in V^{\mathbb{Q}_n}$ by

$$\mathring{\mathcal{T}}_n = \{ \sigma \in {}^{<\omega}2 : (\forall p \in \mathcal{G}_{\mathbb{Q}_n}) (\exists q \in \mathbb{P}) (q \leq p \text{ and } q \Vdash_{\mathbb{P}} \sigma \subseteq \tau) \}$$

Note that $\Vdash_{\mathbb{Q}_n} \mathring{T}_n$ is a leafless subtree of ${}^{<\omega}2$ and

$$\Vdash_{\mathbb{P}} \bigcap_{n \ge 1} [\mathring{T}_n] = \{\tau\}$$

Infinitely often equal or random

Claim

Suppose for some $n \ge 1$ and $q \in \mathbb{Q}_n$, $q \Vdash_{\mathbb{Q}_n} \mathring{T}_n$ is not a perfect tree. Then there exists $p \in \mathbb{P}$ such that $p \le q$ and $p \Vdash_{\mathbb{P}} V[\tau]$ is a random real extension of V.

Proof: Choose $q_1 \in \mathbb{Q}_n$, $q_1 \leq q$ and $\sigma \in {}^{<\omega}2$ such that $q_1 \Vdash_{\mathbb{Q}_n} \sigma \in \mathring{T}_n$ and \mathring{T}_n has a unique branch above σ . Choose $p \in \mathbb{P}$, $p \leq q_1$ such that $p \Vdash_{\mathbb{P}} \sigma \subseteq \tau$. Let $G_{\mathbb{P}}$ be \mathbb{P} -generic over V with $p \in G_{\mathbb{P}}$. Put $G_{\mathbb{Q}_n} = G_{\mathbb{P}} \cap \mathbb{Q}_n$. Then, $\tau[G_{\mathbb{P}}] \in V[G_{\mathbb{Q}_n}]$ since it is the unique branch through $\mathring{T}_n[G_{\mathbb{Q}_n}]$ above σ . Since intermediate models in a random real extension are also random real extensions (as a complete subalgebra of a measure algebra is also a measure algebra), the claim follows.

Infinitely often equal or random

In the other case, we get an infinitely often equal real.

Claim

Suppose for every $n \ge 1$, $\Vdash_{\mathbb{Q}_n} \mathring{T}_n$ is a perfect tree. Then for some Borel function B, $\Vdash_{\mathbb{P}} B(\tau) \in \omega^{\omega}$ is an infinitely often equal real over V.

ション ふゆ アメリア メリア しょうくしゃ

We omit the technical details.

Lemma

Suppose $V \models non(Meager) = \kappa$. Then $V^{\mathbb{P}} \models non(Meager) \leq \kappa$. Let us recall how Pawlikowski did this for $\mathbb{P} = \text{Random}$. Let $C(2^{\omega})$ be the set of all continuous function from 2^{ω} to 2^{ω} . It is a Polish space under the topology of uniform convergence. Fix a non-meager subset $\mathcal{F} \subseteq C(2^{\omega})$ such that $|\mathcal{F}| = non(\text{Meager})$. Let $r \in 2^{\omega}$ be random over V. Then one can show that $X = \{f(r) : f \in \mathcal{F}\}$ is non-meager in V[r]. We take a more "combinatorial approach".

A non-meager set in $V^{\mathbb{P}}$

Let **A** be the set of all quadruples $\mathbf{x} = (\mathbf{m}, \mathbf{k}, \mathbf{n}, \mathbf{h})$ where

(a)
$$\mathbf{m} = \langle m_i : i < \omega \rangle$$
, $\mathbf{n} = \langle n_i : i < \omega \rangle$ and $\mathbf{k} = \langle k_i : i < \omega \rangle$ are in ${}^{\omega}\omega$, $m_0 = 0$ and m_i 's are strictly increasing.

(b)
$$\mathbf{h} = \langle h_i : i < \omega \rangle$$
 where each $h_i : {}^{k_i}2 \rightarrow {}^{[m_i,m_{i+1})}2$.

Let $\{\mathbf{x}_{\alpha} = (\mathbf{m}_{\alpha}, \mathbf{n}_{\alpha}, \mathbf{k}_{\alpha}, \mathbf{h}_{\alpha}) : \alpha < \kappa\}$ be non-meager in **A** w.r.t. the (Polish) topology generated by declaring finite restrictions of members of **A** clopen. Let $\hat{r}_n \in 2^{\omega} \cap V^{\mathbb{P}}$ be the random real added by \mathbb{Q}_n .

Claim

For each $\alpha < \kappa$, define $\mathring{y}_{\alpha} \in 2^{\omega} \cap V^{\mathbb{P}}$ by

$$\mathring{y}_{\alpha} \upharpoonright [m_{\alpha,i}, m_{\alpha,i+1}) = h_{\alpha,i}(\mathring{r}_{n_{\alpha,i}} \upharpoonright 2^{k_{\alpha,i}})$$

ション ふゆ アメリア メリア しょうくしゃ

Then $V^{\mathbb{P}} \models \{ \mathring{y}_{\alpha} : \alpha < \kappa \}$ is non-meager.

Generic ultrapowers

Proof of Theorem: Let \mathbb{P} , $\langle \mathbb{Q}_n : n \geq 1 \rangle$ and $\langle p_n : n \geq 1 \rangle$ satisfy clauses (1)-(4) above. Towards a contradiction, fix a σ -ideal \mathcal{I} on X such that \mathcal{I} is exactly κ -complete and $\mathcal{P}(X)/\mathcal{I}$ is isomorphic to \mathbb{P} . Let G be $\mathcal{P}(X)/\mathcal{I}$ -generic over V and let $j : V \to N \subseteq V[G]$ be the corresponding generic ultrapower embedding with critical point κ .

Fix $f: X \to \kappa$ in V such that $[f]_G$ represents $\kappa \in N$. Define $\mathcal{J} = \{A \subseteq \kappa : f^{-1}[A] \in \mathcal{I}\}$. Let $\mathbb{Q} = \mathcal{P}(\kappa)/\mathcal{J}$. Then $\mathbb{Q} < \mathcal{P}(X)/\mathcal{I}$. By a previous lemma, \mathbb{Q} adds a new real. Let H be \mathbb{Q} -generic over V and let $k: V \to M \subseteq V[H]$ be the corresponding generic ultrapower embedding with critical point κ . Note that ${}^{\kappa}N \cap V[G] \subseteq N$ and ${}^{\kappa}M \cap V[H] \subseteq M$ and we'll use this freely.

Generic ultrapowers

We have the following two cases.

Case 1: There is a real $r \in {}^{\omega}\omega \cap V[H]$ such that r is infinitely often equal to every real in V. Clearly $r \in M$. Let $\langle r_{\alpha} : \alpha < \kappa \rangle$ represent r. Then for every $x \in {}^{\omega}\omega \cap V$, there exists $\alpha < \kappa$ such that r_{α} and x agree infinitely often. It follows that there is a non-meager set of size κ in V. Since \mathbb{P} adds a random real, $V \cap 2^{\omega}$ is meager in V[G]. Let B be a meager F_{σ} -set coded in V[G] that contains $V \cap 2^{\omega}$. Then B is also coded in N. So by elementarity of j, it follows that every set of reals in Vof size $< \kappa$ is meager in V. So $V \models non(Meager) = \kappa$. Hence $N \models non(Meager) = j(\kappa) > \kappa$. By a previous lemma, V[G] and hence Nhas a non-meager set of size κ : A contradiction.

Generic ultrapowers

Case 2: No real in *M* is infinitely often equal to every real in *V*. By a previous lemma, for every new real $r \in M$, V[r] is a random real extension of *V*. Choose $r \in V[H]$ random over *V*. Then $r \in M$. Let $\langle r_{\alpha} : \alpha < \kappa \rangle$ represent *r*. Then $\{r_{\alpha} : \alpha < \kappa\}$ is a non-null set in *V*. Since \mathbb{P} adds a Cohen real, $V \cap 2^{\omega}$ is null in V[G]. Let *B* be a null G_{δ} -set coded in V[G] that contains $V \cap 2^{\omega}$. Then *B* is also coded in *N*. So by elementarity of *j*, it follows that every set of reals in *V* of size $< \kappa$ is null in *V*. In particular, for every $\gamma < \kappa$, $\{r_{\alpha} : \alpha < \gamma\}$ is null in *V*. By considering $k(\langle r_{\alpha} : \alpha < \kappa \rangle)$, it follows that $\{r_{\alpha} : \alpha < \kappa\}$ is null in *M*. Let $r' \in M$ be the code of a null G_{δ} -set witnessing this. It follows that V[r'] is not a random real extension of *V*: A contradiction.

Large free sets

For a function $F: X \to [X]^{<\omega}$, we say that $Y \subseteq X$ is *F*-free iff

$$(\forall x, y \in Y)(x \neq y \implies y \notin F(x))$$

Komjáth's question can be reformulated as follows.

Question

Suppose $X \subseteq [0,1]$ and $F : X \to [X]^{<\omega}$. Must there exist an F-free $Y \subseteq X$ such that $\mu^*(Y) = \mu^*(X)$?

Question

Suppose $X \subseteq [0,1]$ is non-null and $f : X \to X$. Must there exist $Y \subseteq X$ such that $\mu^*(Y) > 0$ and $\mu^*(X \setminus f^{-1}[Y]) = \mu^*(X)$?

The transversal theorem says that if f is countable-to-one, then the answer is yes.

Category

Fact

Suppose $X \subseteq [0,1]$, $1 \le n < \omega$ and $F : X \to [X]^{\le n}$. Then there exists an *F*-free $Y \subseteq X$ such that *Y* is everywhere non-meager in *X*.

Our proof of this exploits the following. If an atomless forcing \mathbb{P} has a countable dense set subset, then \mathbb{P} is isomorphic to Cohen forcing. For details, see [2].

References

- D. H. Fremlin, Measure Theory Vol. 5 Part II (Set-theoretic measure theory), https://www1.essex.ac.uk/maths/people/fremlin/mt.htm
- [2] A. Kumar, On a question of Komjáth, Note of Oct. 2016, https://home.iitk.ac.in/~krashu/qk.pdf
- [3] A. Kumar and S. Shelah, A transversal of full outer measure, Adv. in Math, Vol. 321 (2017), 475-485
- J. Pawlikowski, Why Solovay real produces Cohen real, J. Symbolic Logic, Vol. 51 (1986), 957-968

ション ふゆ アメリア メリア しょうくしゃ